The Type III Secretion Translocation Pore Senses Host Cell Contact.

نویسندگان

  • Erin I Armentrout
  • Arne Rietsch
چکیده

Type III secretion systems (T3SS) are nano-syringes used by a wide range of Gram-negative pathogens to promote infection by directly injecting effector proteins into targeted host cells. Translocation of effectors is triggered by host-cell contact and requires assembly of a pore in the host-cell plasma membrane, which consists of two translocator proteins. Our understanding of the translocation pore, how it is assembled in the host cell membrane and its precise role in effector translocation, is extremely limited. Here we use a genetic technique to identify protein-protein contacts between pore-forming translocator proteins, as well as the T3SS needle-tip, that are critical for translocon function. The data help establish the orientation of the translocator proteins in the host cell membrane. Analysis of translocon function in mutants that break these contacts demonstrates that an interaction between the pore-forming translocator PopD and the needle-tip is required for sensing host cell contact. Moreover, tethering PopD at a dimer interface also specifically prevents host-cell sensing, arguing that the translocation pore is actively involved in detecting host cell contact. The work presented here therefore establishes a signal transduction pathway for sensing host cell contact that is initiated by a conformational change in the translocation pore, and is subsequently transmitted to the base of the apparatus via a specific contact between the pore and the T3SS needle-tip.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Needle length control and the secretion substrate specificity switch are only loosely coupled in the type III secretion apparatus of Shigella

The type III secretion apparatus (T3SA), which is evolutionarily and structurally related to the bacterial flagellar hook basal body, is a key virulence factor used by many gram-negative bacteria to inject effector proteins into host cells. A hollow extracellular needle forms the injection conduit of the T3SA. Its length is tightly controlled to match specific structures at the bacterial and ho...

متن کامل

Role of predicted transmembrane domains for type III translocation, pore formation, and signaling by the Yersinia pseudotuberculosis YopB protein.

YopB is a 401-amino-acid protein that is secreted by a plasmid-encoded type III secretion system in pathogenic Yersinia species. YopB is required for Yersinia spp. to translocate across the host plasma membrane a set of secreted effector proteins that function to counteract immune signaling responses and to induce apoptosis. YopB contains two predicted transmembrane helices (residues 166 to 188...

متن کامل

Translocation of ExsE into Chinese hamster ovary cells is required for transcriptional induction of the Pseudomonas aeruginosa type III secretion system.

Transcription of the Pseudomonas aeruginosa type III secretion system (T3SS) is induced under Ca(2+)-limiting growth conditions or following the contact of the bacteria with host cells. The regulatory response to low Ca(2+) levels is initiated by the T3SS-mediated secretion of ExsE, a negative regulatory protein that prevents T3SS gene transcription. In the present study, we demonstrated that E...

متن کامل

Oligomeric states of the Shigella translocator protein IpaB provide structural insights into formation of the type III secretion translocon.

The Shigella flexneri Type III secretion system (T3SS) senses contact with human intestinal cells and injects effector proteins that promote pathogen entry as the first step in causing life threatening bacillary dysentery (shigellosis). The Shigella Type III secretion apparatus (T3SA) consists of an anchoring basal body, an exposed needle, and a temporally assembled tip complex. Exposure to env...

متن کامل

Liposomes recruit IpaC to the Shigella flexneri type III secretion apparatus needle as a final step in secretion induction.

Shigella flexneri contact with enterocytes induces a burst of protein secretion via its type III secretion apparatus (TTSA) as an initial step in cellular invasion. We have previously reported that IpaD is positioned at the TTSA needle tip (M. Espina et al., Infect. Immuno. 74:4391-4400, 2006). From this position, IpaD senses small molecules in the environment to control the presentation of Ipa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • PLoS pathogens

دوره 12 3  شماره 

صفحات  -

تاریخ انتشار 2016